







# **LLM Reasoners**

New Evaluation, Library and Analysis of step-by-step reasoning with LLMs



Shibo Hao\*





Haotian



Tianyang Liu



Xiyan Shan



Xinyuan Wang



Shuhua Xie



Haodi Ma



Adithya Samayedhi



Zhen Wang



Zhiting Hu

### Large Language Model Reasoning



### In this story



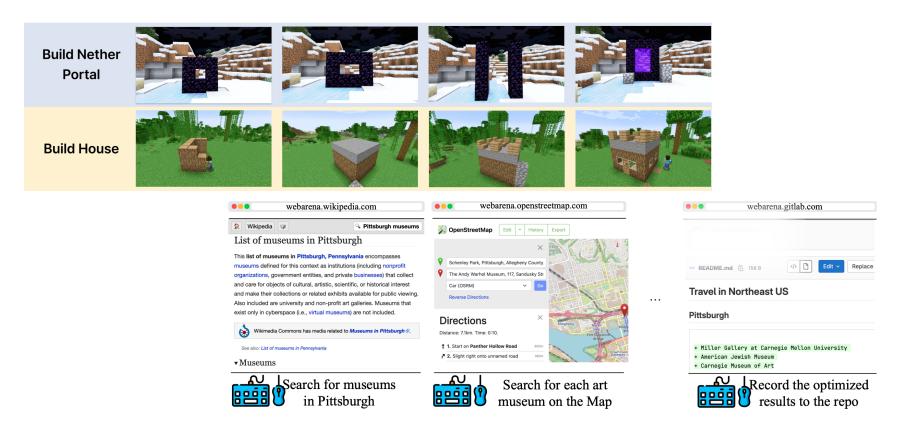
Our new benchmark approach to MMLU enables Gemini to use its reasoning capabilities to think more carefully before answering difficult questions, leading to significant improvements over just using its first impression.

@AnthropicAI

Today, we're announcing Claude 3, our next generation of AI models.

The three state-of-the-art models—Claude 3 Opus, Claude 3 Sonnet, and Claude 3 Haiku—set new industry benchmarks across reasoning, math, coding, multilingual understanding, and vision.

# Large Language Model Reasoning



# Outline

### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

# Outline

### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

## Large Language Model Reasoning

### **Model Input**

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

### **Model Output**

A: The answer is 27.

### Standard Prompting

#### **Model Input**

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

#### **Model Output**

A: The answer is 27.



### **Chain-of-Thought Prompting**

#### **Model Input**

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

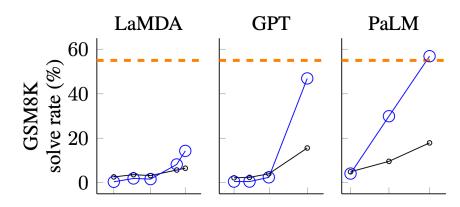
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

#### **Model Output**

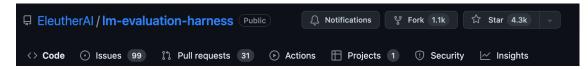
A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

Standard prompting
Chain-of-thought prompting
Prior supervised best



### Becomes the **Default Choice**





|                                              | Claude 3<br>Opus           | Claude 3<br>Sonnet         | <b>Claude</b> 3<br>Haiku   |
|----------------------------------------------|----------------------------|----------------------------|----------------------------|
| Undergraduate<br>level knowledge<br>MMLU     | <b>86.8%</b> 5 shot        | <b>79.0%</b> 5-shot        | <b>75.2%</b> 5-shot        |
| Graduate level<br>reasoning<br>GPQA, Diamond | <b>50.4%</b><br>0-shot CoT | <b>40.4%</b><br>0-shot CoT | <b>33.3%</b><br>0-shot CoT |
| Grade school math GSM8K                      | <b>95.0%</b><br>0-shot CoT | <b>92.3%</b><br>0-shot CoT | <b>88.9%</b><br>0-shot CoT |
| Math<br>problem-solving<br>MATH              | <b>60.1%</b><br>0-shot CoT | <b>43.1%</b><br>0-shot CoT | <b>38.9%</b><br>0-shot CoT |

Can we design algorithms to generate better reasoning chains with LLMs?





# Reasoning with Language Model is Planning with World Model 😵









Yi Gu\*









Haodi Ma Joshua Hong Zhen Wang Daisy Wang Zhiting Hu

### Chain-of-thoughts vs Human reasoning

**Blocksworld:** How to move the blocks to the goal state?



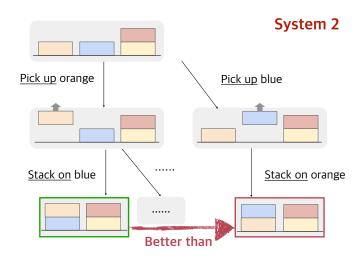
### A: Chain-of-Thoughts Prompting (CoT) with LLM

Autoregressive decoding



### **B:** Human Reasoning

- Internal world model to track states
- **Explore** alternative reasoning paths
- Assess outcomes by looking ahead



On the planning abilities of large language models (a critical investigation with a proposed benchmark) [Valmeekam et al, 2023] Chain-of-thought prompting elicits reasoning in large language models [Wei et al., 2022] Mental models: Towards a cognitive science of language, inference, and consciousness [Johnson-Laird, 1983]

# Reasoning-via-Planning (RAP 🎶)

### **Human Reasoning**

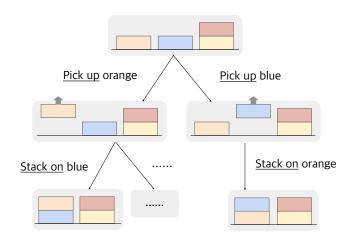
- Internal world model to track states
- **Explore** alternative reasoning paths
- Assess outcomes by looking ahead

### How to enable LLMs to reason close to humans?

### Reasoning-via-Planning: RAP

- Repurpose LLM as world model
- Principled **planning** algorithm
- Rewards to estimate outcomes

### Reasoning-via-Planning (RAP)



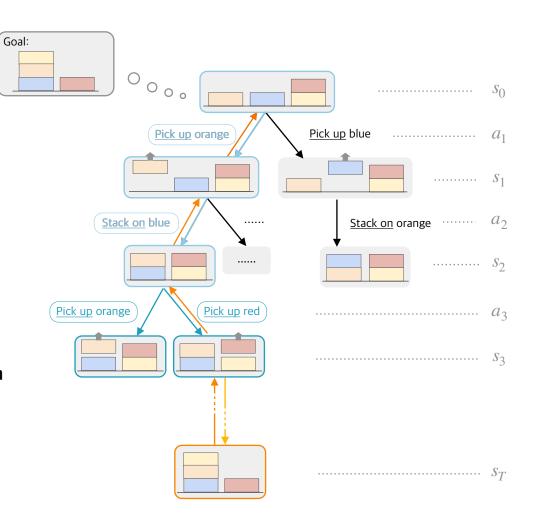
### Planning Algorithm

### Monte Carlo Tree Search (MCTS):

Iteratively build reasoning tree

- 1. Selection
- 2. Expansion
- 3. Simulation
- 4. Back-propagation

Balanced exploration and exploitation



### Rewards in RAP

### Reward design is flexible

#### In Blocksworld:

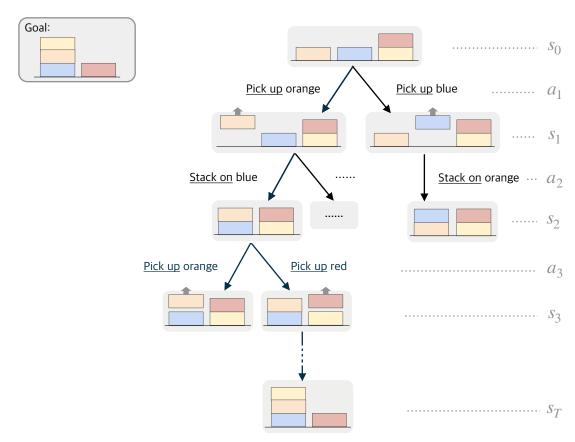
- Likelihood of actions
- Task-heuristic (# of subgoals)

### Other possible rewards:

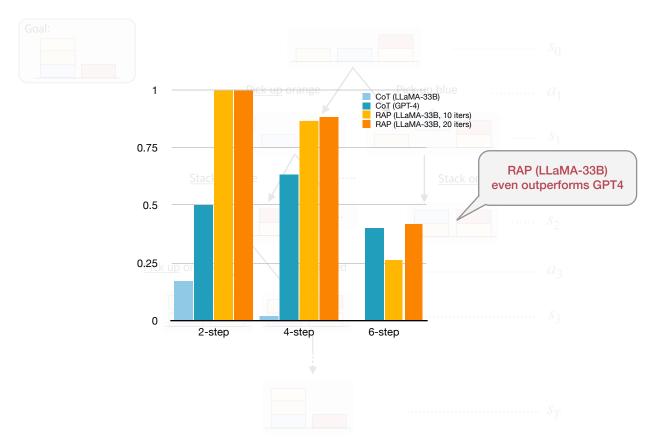
- Self-evaluation by LLM (e.g. useful? correct?)
- Confidence of next state
- .....



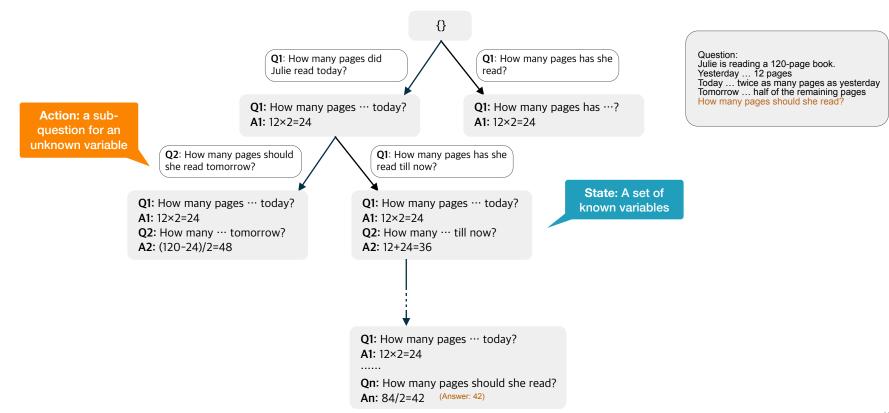
# RAP on Plan Generation (Blocksworld)



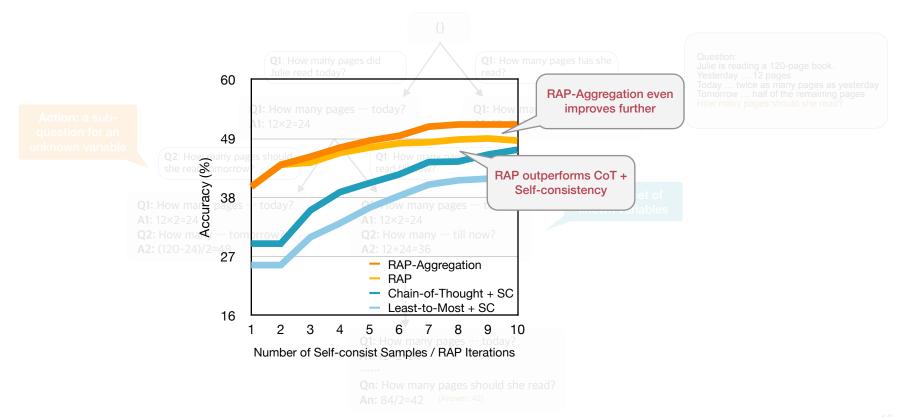
# RAP on Plan Generation (Blocksworld)



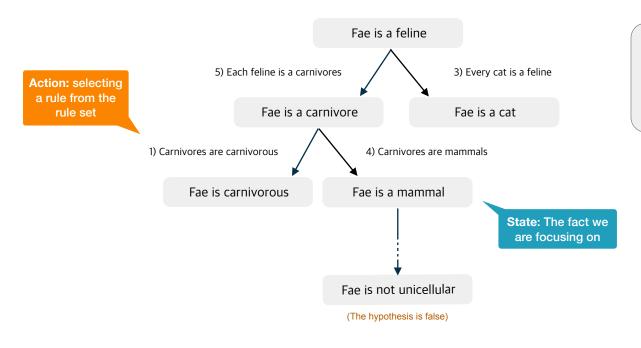
### RAP on Mathematical Reasoning (GSM8k)



### RAP on Mathematical Reasoning (GSM8k)



### RAP on Logical Reasoning (PrOntoQA)



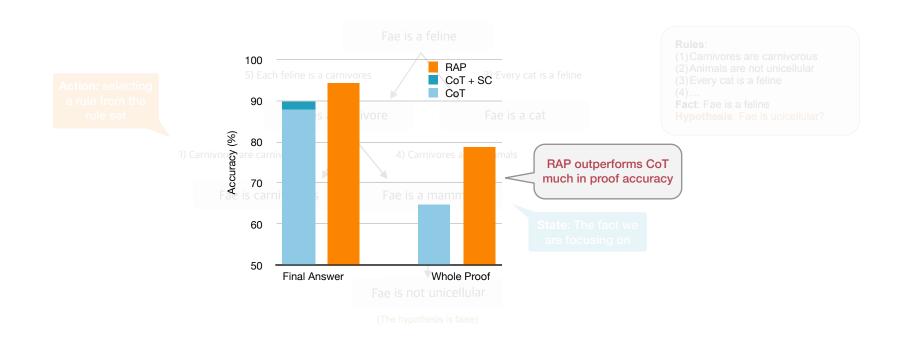
#### Rules:

- (1) Carnivores are carnivorous
- (2) Animals are not unicellular
- (3) Every cat is a feline
- (4)...

Fact: Fae is a feline

Hypothesis: Fae is unicellular?

### RAP on Logical Reasoning (PrOntoQA)



# **Q1:** Different formulations and implementations?

#### **Chain-of-Thought Prompting Elicits Reasor** in Large Language Models

Jason Wei Dale Schuurmans Brian Ichter

Google Research, Brain Team {jasonwei,dennyzhou}@google.com Solving Math Word Problems via Cooperative Reasoning induced Language Models

Xinyu Zhu<sup>♦</sup>\* Junjie Wang\*\* Lin Zhang<sup>♡</sup> Yuxiang Zhar Yuiiu Yang<sup>♦†</sup> Ruyi Gan<sup>♡</sup> Jiaxing Zhang<sup>©</sup>

♠Waseda University ♦ Tsinghua University <sup>♥</sup>International Digital Economy Academy

zhuxv21@mails.tsinghua.edu.cn yang.yujiu@sz.tsinghua.edu.cn wjj1020181822@toki.waseda.jp joel0495@asagi.waseda.jp

{zhanglin, ganruyi, zhangjiaxing}@idea.edu.cn

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Shunyu Yao Princeton University

Dian Yu Google DeepMind

Google DeepMind

Izhak Shafran Google DeepMind

Thomas L. Griffiths Princeton University

Yuan Cao Google DeepMind Karthik Narasimhan Princeton University

#### Reasoning with Language Model is Planning with World Model

Shibo Hao\*<sup>♣</sup> Yi Gu\*<sup>♣</sup> Haodi Ma<sup>♦</sup> Joshua Jiahua Hong<sup>♣</sup> Zhen Wang♣ ♠ Daisy Zhe Wang♦ Zhiting Hu♣

♣UC San Diego, ♦University of Florida ♦ Mohamed bin Zayed University of Artificial Intelligence {s5hao, yig025, jjhong, zhw085, zhh019}@ucsd.edu {ma.haodi. daisvw}@ufl.edu

**GRACE: Discriminator-Guided Chain-of-Tl** 

Muhammad Khalifa\*, Lajanugen Logeswaran†, Moontae Lee†‡, Honglak Lee\*†, Lu Wang\*

University of Michigan\*, LG AI Research<sup>†</sup>, University

TOOLCHAIN\*: EFFICIENT ACTION SPACE NAVIGATION IN LARGE LANGUAGE MODELS WITH A\* SEARCH

Yuchen Zhuang1\*, Xiang Chen2, Tong Yu2, Saayan Mitra2 Victor Bursztyn<sup>2</sup>, Ryan A. Rossi<sup>2</sup>, Somdeb Sarkhel<sup>2</sup>, Chao Zhang<sup>1</sup> Georgia Institute of Technology<sup>1</sup> Adobe Research<sup>2</sup> yczhuang@gatech.edu, {xiangche, tyu, smitra}@adobe.com {soaresbu, ryrossi, sarkhel}@adobe.com, chaozhang@gatech.edu

AlphaZero-Like Tree-Search can Guide **Large Language Model Decoding and Training** 

Xidong Feng \*1 Zivu Wan \*2 Muning Wen 2 Stephen Marcus McAleer 3 Ying Wen<sup>2</sup> Weinan Zhang<sup>2</sup> Jun Wang<sup>1</sup>

# Outline

### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

# Step-by-step reasoning algorithms

Chain-of-Thoughts Self-eval Beam Search Tree-of-thoughts Reasoning-via-planning [Wei et al., 2022] [Xie et al., 2023] [Yao et al., 2023] [Hao et al., 2023] **MCTS** Beam **BFS** Search or  $a_0$ DFS  $a_0$  $a_1$  $S_T$ Auto-regressive : "Is this step correct?" "Which is better?" : "Next state?" Decoding

# **Unified formulation** of reasoning algorithms

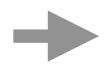
Chain-of-Thoughts [Wei et al., 2022]

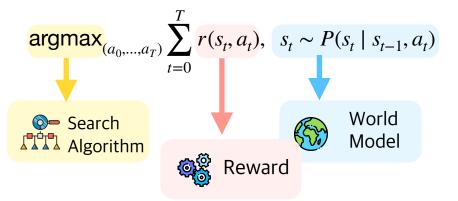
Self-eval Beam Search [Xie et al., 2023]

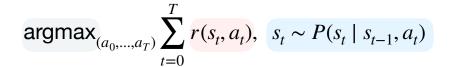
> Tree-of-thoughts [Yao et al., 2023]

[Hao et al., 2023]

Reasoning-via-planning





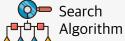


(5)

World Model

$$s_t = (a_0, \dots, a_t)$$

Chain-of-Thoughts (§ CoT)

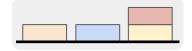


greedy decoding



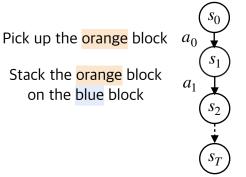
$$P_{\theta}(a_t \mid s_t)$$

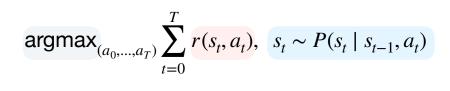
### Task:



Manipulates the blocks such that:

- Orange block on the blue block;
- Yellow block is on the orange block.





(5)

World Model

 $s_t = (a_0, \dots, a_t)$ 

Chain-of-Thoughts (§ CoT)

Search
Algorithm

Reward Function

greedy decoding

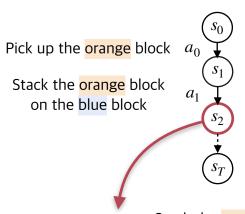
 $P_{\theta}(a_t \mid s_t)$ 

#### Task:



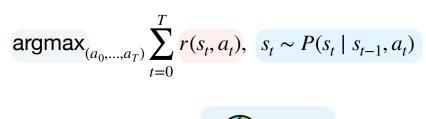
Manipulates the blocks such that:

- Orange block on the blue block;
- Yellow block is on the orange block.



( Pick up the orange block,

Stack the orange block on the blue block



World Model

$$s_t = (a_0, \dots, a_t)$$

Tree-of-Thoughts

( ToT)

Search

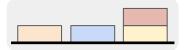
Algorithm

BFS / DFS



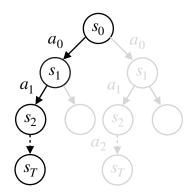
$$P_{\theta}("good" \mid s_t, a_t)$$

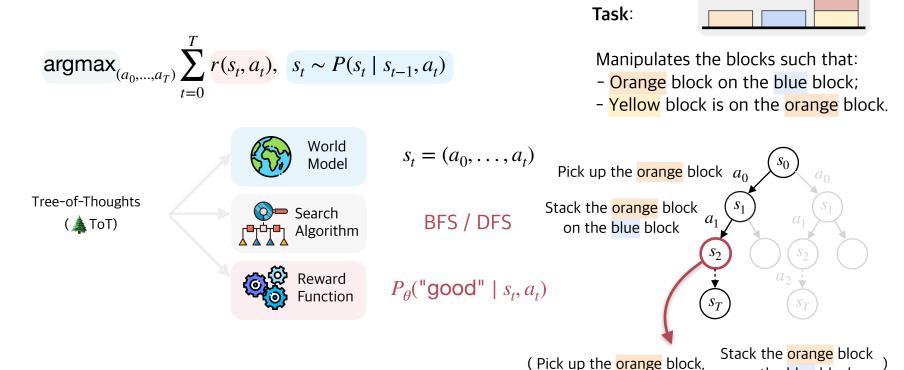
#### Task:



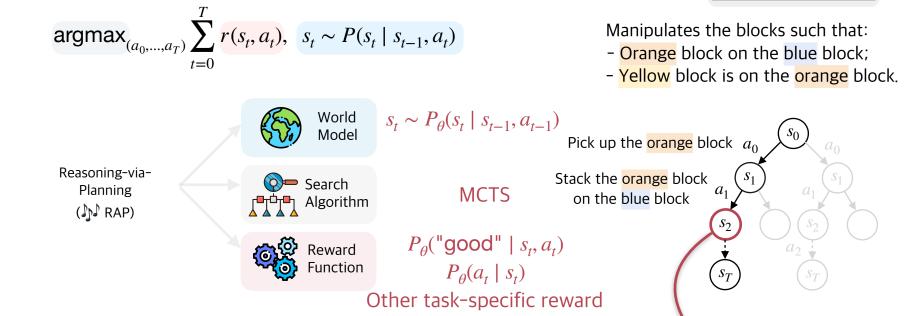
Manipulates the blocks such that:

- Orange block on the blue block;
- Yellow block is on the orange block.

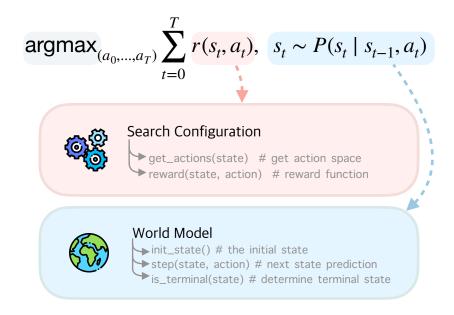


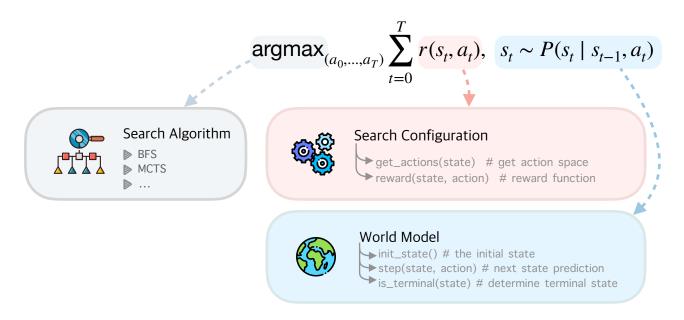


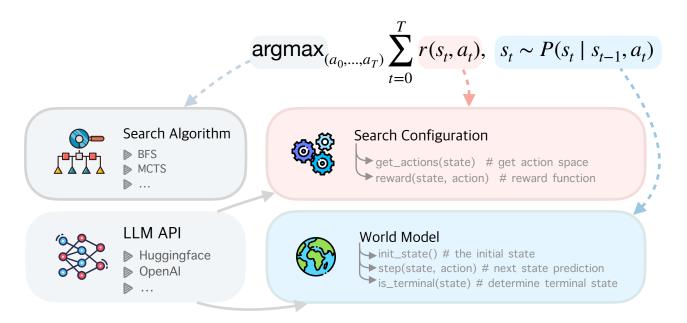
on the blue block

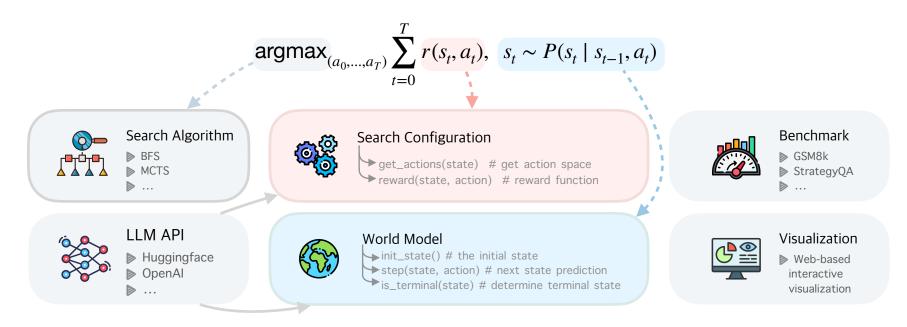


Task:











### Search Algorithm

▶ BFS▶ MCTS





### Search Configuration

get\_actions(state) # get action space
reward(state, action) # reward function



#### LLM API

- Exllama
- OpenAl
- **》** ...



#### World Model

- init\_state() # the initial state
- → step(state, action) # next state prediction
  - is\_terminal(state) # determine terminal state

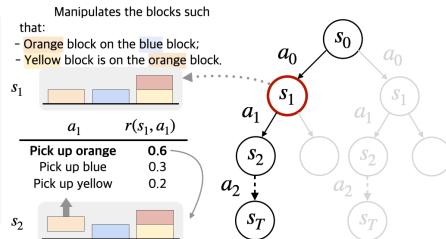
```
from reasoners import SearchConfig, WorldModel
from reasoners.algorithm import MCTS
from reasoners.lm import Llama2Model
from reasoners import Reasoner

class MyWorldModel(WorldModel):
    def step(self, state, action):
        return self.llm.generate(self.next_state_prompt.format(state, action))
...

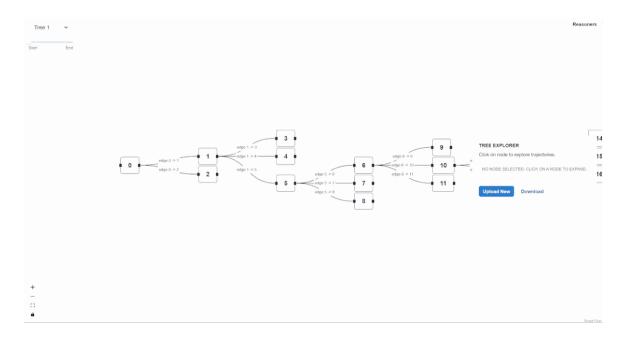
class MyConfig(SearchConfig):
    def reward(self, state, action):
        self_eval = self.llm.generate(self.eval_prompt.format(state, action))
        return self_eval
...

reasoner = Reasoner(
    world_model=MyWorldModel(), search_config=MyConfig(), search_algo= MCTS()
)
```

#### Task:







# Outline

#### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

## Large Language Model Step-by-step Reasoning

## **Q2:** How to evaluate step-by-step reasoning?

Q: Does Amtrak operate four wheel vehicles?

- Amtrak transports people with trains and buses.
- 2. A bus is a four wheel vehicle.
- 3. The answer is **yes**.

- Amtrak operates trains, which are four wheel vehicles.
- 2. Thus, Amtrak operates four wheel vehicles.
- 3. So the answer is **yes**.

Correct answer but incorrect reasoning

(39% of the cases in StrategyQA)

Ground Truth

Llama-2 70B

### Reasoning Chain Evaluation

#### Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
- Train a model to evaluate (Golovneva et al., 2022)
- Prompt GPT-4 to evaluate (He et al., 2023)

### Reasoning Chain Evaluation

#### Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
- Train a model to evaluate (Golovneva et al., 2022) Training data
- Prompt GPT-4 to evaluate (He et al., 2023, Tyen et al., 2023)

Human-written demonstration

Need additional human efforts

### Reasoning Chain Evaluation

#### Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
- Train a model to evaluate (Golovneva et al., 2022)
- Prompt GPT-4 to evaluate (He et al., 2023, Tyen et al., 2023)

Instruction to GPT-4 not adaptive to different tasks

LLMs cannot find reasoning errors, but can correct them!

Gladys Tyen\*1, Hassan Mansoor2, Victor Cărbune2, Peter Chen†2, Tony Mak†2

1 University of Cambridge, Dept. of Computer Science & Technology, ALTA Institute

2 Google Research

gladys.tyen@cl.cam.ac.uk

{hassan,chenfeif,tonymak,vcarbune}@google.com

- Need additional human efforts
- Unsatisfactory evaluation accuracy



#### Q: Can one ignite helium?

- 1. Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.



#### Is this answer correct?

The given answer is partially correct...

#### Q: Can one ignite helium?

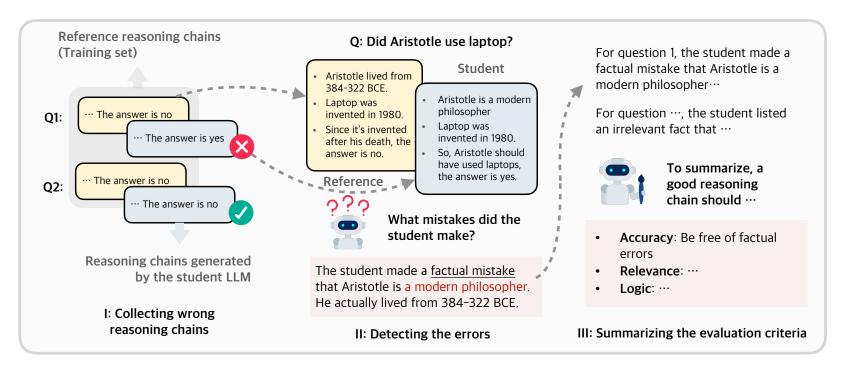
- 1. Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.



Following the criteria, evaluate the reasoning chain step by step.

- Accuracy: ···, correct.
- Relevance: The information in the first two steps are irrelevant to the question.
- Logic: The final step cannot be inferred from the previous steps.

So, the reasoning is **INCORRECT**.



**Criterion List Construction** 

#### Automatic Reasoning Chain Evaluation

For question 1, the student made a factual mistake that Aristotle is a modern philosopher…

For question …, the student listed an irrelevant fact that …



To summarize, a good reasoning chain should …

- Accuracy: Be free of factual errors
- Relevance: ···
- Logic: ···

#### Q: Can one ignite helium?



- Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.

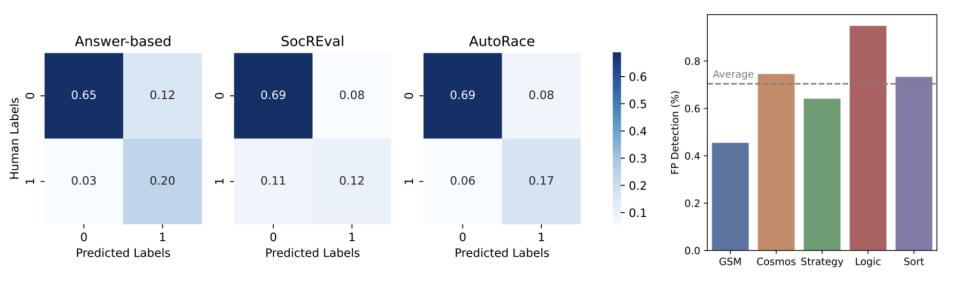
Following the criteria, evaluate the reasoning chain step by step.

- Accuracy: ···, correct.
- Relevance: The information in the first two steps are irrelevant to the question.
- Logic: The final step cannot be inferred from the previous steps.

So, the reasoning is **INCORRECT**.

| Method          | Math  |       | Common   |        | Logical |      | Average | Fully    |
|-----------------|-------|-------|----------|--------|---------|------|---------|----------|
| Wiethou         | GSM8k | Arith | Strategy | Cosmos | Logic   | Sort | Werage  | Auto.    |
| Answer-based    | 0.94  | 0.94  | 0.76     | 0.67   | 0.87    | 0.94 | 0.85    |          |
| SocREval        | 0.89  | 0.85  | 0.71     | 0.80   | 0.89    | 0.77 | 0.82    | X        |
| Direct (trace)  | 0.90  | 0.38  | 0.80     | 0.72   | 0.21    | 0.36 | 0.56    | X        |
| Direct (step)   | 0.85  | 0.43  | 0.83     | 0.73   | 0.75    | 0.33 | 0.65    | X        |
| CoT (step)      | 0.78  | 0.74  | 0.78     | 0.72   | 1.00    | 0.86 | 0.81    | X        |
| AutoRace (Ours) | 0.91  | 0.85  | 0.79     | 0.78   | 0.97    | 0.86 | 0.86    | <b>✓</b> |

- No additional human efforts neededBetter average accuracy
- Remain robust across different tasks



- Balancing precision and recall
- Detect 70% of the false positive chains

False positive chains recognized by AutoRace:

| Type | Question                                                                                                                                                                                                      | Answer                                                                                                                                                                                          | Explanation                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| A    | Henry made two stops during his 60-mile bike trip. He first stopped after 20 miles. His second stop was 15 miles before the end of the trip. How many miles did he travel between his first and second stops? | Step 1 - Henry traveled 20 miles + 15 miles = 35 miles between his first and second stops.  Step 2 - Henry traveled 60 miles - 35 miles = 25 miles without stopping.  Step 3 - The answer is 25 | There is a hallucination in an early reasoning step, but the following reasoning steps ignore the mistake and reach the correct answer. |
| В    | Is "A Tale of Two Cities" a parody of the Bible?                                                                                                                                                              | "A Tale of Two Cities" was published in 1859, and the Bible was published much earlier. Thus, "A Tale of Two Cities" is not a parody of the Bible. So the answer is no.                         | The reasoning chain has obvious or multiple mistakes, but hits the correct answer by chance.                                            |
| С    | Is clementine pith highly sought after?                                                                                                                                                                       | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                | The reasoning chain is not informative at all, though the answer is correct.                                                            |

# Outline

#### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

## Experimental Results

| Method    | Math        |             |        | Logical | Common             | Embodied |
|-----------|-------------|-------------|--------|---------|--------------------|----------|
| Method    | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA*        | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76)        | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76)        | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | <b>0.42</b> (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77)        | 0.51     |

For three datasets marked with\*, we evaluate the reasoning chain with both AutoRace and the answer correctness (in brackets)

Other tasks use oracle evaluator (e.g., program/simulator)

From auto-regressive decoding to reward-guided search

| Method    | Math        |             |        | Logical | Common             | Embodied |
|-----------|-------------|-------------|--------|---------|--------------------|----------|
| Wiethou   | GSM8k*      | $AQuA^*$    | Game24 | PrOnto  | StrategyQA*        | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76)        | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76)        | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | <b>0.42</b> (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77)        | 0.51     |

Overall improved performance with search

From auto-regressive decoding to reward-guided search

| Method    | Math        |             |        | Logical | Common      | Embodied |
|-----------|-------------|-------------|--------|---------|-------------|----------|
| Metriod   | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA* | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76) | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76) | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | 0.42 (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77) | 0.51     |

Less false positive

#### Less false positive chains

A mechanism to "regret"

From auto-regressive decoding to reward-guided search

| Type | Question                                                                                                                                                                                                      | Answer                                                                                                                                                                                          | Explanation                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| A    | Henry made two stops during his 60-mile bike trip. He first stopped after 20 miles. His second stop was 15 miles before the end of the trip. How many miles did he travel between his first and second stops? | Step 1 - Henry traveled 20 miles + 15 miles = 35 miles between his first and second stops.  Step 2 - Henry traveled 60 miles - 35 miles = 25 miles without stopping.  Step 3 - The answer is 25 | There is a hallucination in an early reasoning step, but the following reasoning steps ignore the mistake and reach the correct answer. |
| В    | Is "A Tale of Two Cities" a parody of the Bible?                                                                                                                                                              | "A Tale of Two Cities" was published in 1859, and the Bible was published much earlier. <b>Thus</b> , "A Tale of Two Cities" is not a parody of the Bible. So the answer is no.                 | The reasoning chain has obvious or multiple mistakes, but hits the correct answer by chance.                                            |
| С    | Is clementine pith highly sought after?                                                                                                                                                                       | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                | The reasoning chain is not informative at all, though the answer is correct.                                                            |

From auto-regressive decoding to reward-guided search

| Method    | Math        |             |        | Logical | Common             | Embodied |
|-----------|-------------|-------------|--------|---------|--------------------|----------|
| Metriod   | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA*        | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76)        | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76)        | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | <b>0.42</b> (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77)        | 0.51     |

The breadth of search matters more than the depth

The impact of world model

| Method    | Math        |             |        | Logical | Common             | Embodied |
|-----------|-------------|-------------|--------|---------|--------------------|----------|
| Method    | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA*        | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76)        | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76)        | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | <b>0.42</b> (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77)        | 0.51     |

A world model improves performance in most domains Most effective in Embodied Planning task

The impact of prompting format

| Method    | Math        |             |        | Logical | Common      | Embodied |
|-----------|-------------|-------------|--------|---------|-------------|----------|
| Method    | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA* | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76) | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76) | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | 0.42 (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77) | 0.51     |

#### Q: Did either Kublai Khan or his grandfather practice monogamy?

#### Chain-of-thoughts:

Step 1: Both Kublai Khan and his grandfather, Genghis Khan, were polygamous.

Step 2: Thus, neither Kublai Khan nor his grandfather practiced monogamy.

Step 3: So the answer is no.





#### RAP:

Step 1: Did Kublai Khan have a harem? - Kublai Khan had a harem of 7,000 women. So the answer is yes.

Step 2: Did Genghis Khan have a harem? - Genghis Khan had a harem of 500 women. So the answer is yes.

Step 3: Does having a harem of women mean practicing polygamy? - Having a harem of women means practicing polygamy.

So the answer is yes.

Step 4: ... So the answer is no.

#### The impact of prompting format

| Type | Question                                                                                                                                                                                                      | Answer                                                                                                                                                                                          | Explanation                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| A    | Henry made two stops during his 60-mile bike trip. He first stopped after 20 miles. His second stop was 15 miles before the end of the trip. How many miles did he travel between his first and second stops? | Step 1 - Henry traveled 20 miles + 15 miles = 35 miles between his first and second stops.  Step 2 - Henry traveled 60 miles - 35 miles = 25 miles without stopping.  Step 3 - The answer is 25 | There is a hallucination in an early reasoning step, but the following reasoning steps ignore the mistake and reach the correct answer. |
| В    | Is "A Tale of Two Cities" a parody of the Bible?                                                                                                                                                              | "A Tale of Two Cities" was published in 1859, and the Bible was published much earlier. Thus, "A Tale of Two Cities" is not a parody of the Bible. So the answer is no.                         | The reasoning chain has obvious or multiple mistakes, but hits the correct answer by chance.                                            |
| С    | Is clementine pith highly sought after?                                                                                                                                                                       | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                | The reasoning chain is not informative at all, though the answer is correct.                                                            |

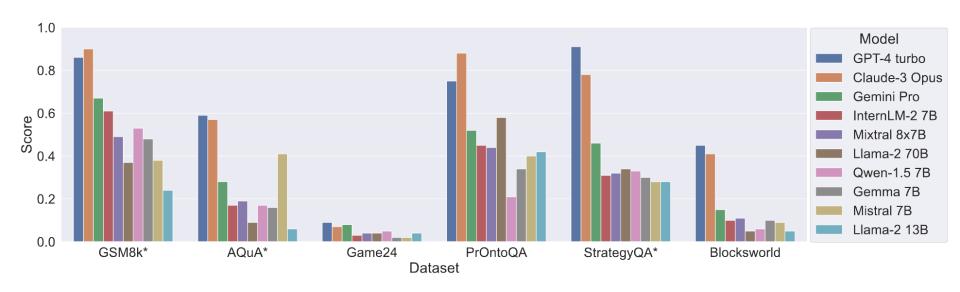
The impact of prompting format

| Method    | Math        |             |        | Logical | Common             | Embodied |
|-----------|-------------|-------------|--------|---------|--------------------|----------|
| Metriod   | GSM8k*      | AQuA*       | Game24 | PrOnto  | StrategyQA*        | Blocks   |
| СоТ       | 0.37 (0.54) | 0.09 (0.34) | 0.04   | 0.58    | 0.34 (0.76)        | 0.05     |
| ToT (BFS) | 0.53 (0.58) | 0.15 (0.42) | 0.04   | 0.52    | 0.41 (0.76)        | 0.09     |
| ToT (DFS) | 0.45 (0.52) | 0.10 (0.36) | 0.07   | 0.44    | <b>0.42</b> (0.76) | 0.08     |
| RAP       | 0.58 (0.64) | 0.20 (0.47) | 0.07   | 0.59    | 0.28 (0.77)        | 0.51     |

#### **Easier to trigger false positives**

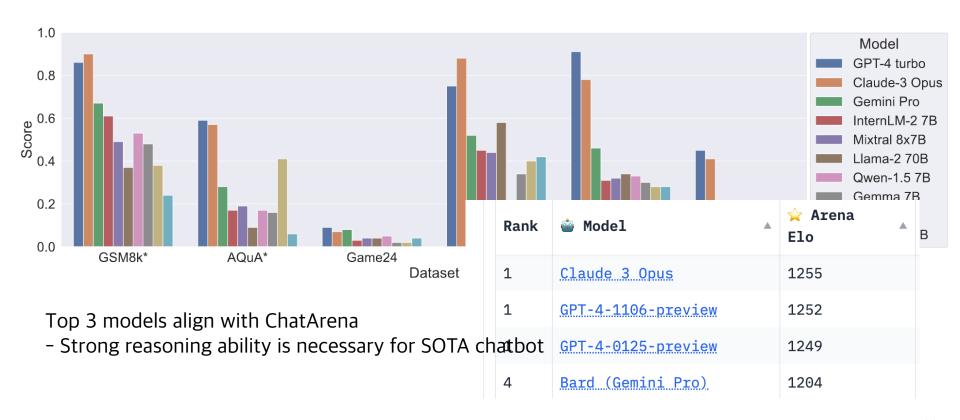
But only for certain datasets, where the details are not necessary

#### AutoRace Leaderboard



Top models can almost solve GSM8k, StrategyQA But fails on long-range reasoning tasks requiring planning

#### AutoRace Leaderboard



## Summary

### Reasoning with LLMs:

- Algorithms
- Library
- Evaluation
- Analysis

