# ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings 

## Background

The original price of MacBook Air is $\$ 1580$. Can you help me purchase it when it gets $10 \%$ off?
Sorry, but this is beyond my
capabilities as a language model $\cdots$
LLMs fail to help people with daily tasks, due to their functional limitations, e.g., accurate math calculation, updated world knowledge, taking real-world actions, etc.
Imagine if we can connect LLMs with tools seamlessly..

|  | <multiply> (1580, 90\%) | 1422 |
| :---: | :---: | :---: |
| [G0 | <price> ("MacBook Air") | \$1390 |
|  | <purchase> ("MacBook Air") | Success. |

Previous works fine-tune LLMs or prompt LLMs (in-context learning) to call APIs.

- Frozen LMs: No need for costly tuning
- Massive Tools: Works with a large tool set
- Plug \& Play: Flexible to add / delete a tool
- Accuracy : Learn deep semantics of tools :

$$
\begin{array}{cc}
\text { FT } & \text { ICL } \\
\times & \boldsymbol{v} \\
\boldsymbol{v} & \times \\
\times & \sqrt{ } \\
\boldsymbol{v} & \times
\end{array}
$$

## Framework

Our approach represents each tool as a token ("toolken") and learns an embedding for it.

## Inference:

- ${ }_{0}^{\circ}$ considering word tokens and plugged-in toolkens jointly
- Tool mode - Once a toolken is predicted, the LLM is prompted to complete the arguments using ICL.
- Tool Execution - The external tool processes the call, and the results are sent back to the reasoning mode.


```
ing Hu
```


## Training

Objective - Next token/toolken prediction


Disentangled Representation of tools $\longrightarrow$ Plug-and-play No gradients flow through LLM $\rightarrow$ As fast as LLM inference
Data source: Demonstration / Synthetic data (self-instruct)

## Experiments


2. Knowledge-based Question Answering
$\quad$ W/ Mnowledge base
3. Embodied Plan Generation
w/ robot action



