湦ToolkenGPT

Augmenting Frozen Language Models with Massive Tools via Tool Embeddings

Shibo Hao

Tianyang Liu

Zhen Wang

Zhiting Hu

LLMs fail on complex real-world tasks

LLMs fail on complex real-world tasks

Lacking the abilities for

LLMs fail on complex real-world tasks

Lacking the abilities for

Accurate math calculation

The original price of MacBook Air is
$\$ 1580$. Can you help me purchase it
when it gets 10\% off?

LLMs fail on complex real-world tasks

Lacking the abilities for

- Accurate math calculation

LLMs fail on complex real-world tasks

Lacking the abilities for

- Accurate math calculation

Up-to-date knowledge

LLMs fail on complex real-world tasks

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge

LLMs fail on complex real-world tasks

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge

Lacking the abilities for

LLMs fail on complex real-world tasks

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge
- Taking real-world actions

How to extend the abilities of LLMs?

Augmenting language models with tools will help unlock those abilities!

- Accurate math calculation

- Accessing up-to-date knowledge

Database

- Taking real-world actions
$\stackrel{A P I}{P} \mathrm{APobot}$

Teaching LLMs to Use Tools

Augmenting language models with tools will help unlock those abilities!

- Accurate math calculation

蒝

- Accessing up-to-date knowledge

- Taking real-world actions

API/Robot

Success.

Previous method \#1: Fine-tuning

Train the LLM with the demonstrations of tool calling

Talm: Tool augmented language models [Parisi et al., 2022]
Toolformer: Language models can teach themselves to use tools [Schick et al., 2023]

Previous method \#1: Fine-tuning

Train the LLM with the demonstrations of tool calling

But …

- Not Frozen LLMs: Fine-tuning an LLM is expensive
- Not Plug-and-play: Once we want to add, delete or update a tool, the LLM needs to be re-trained

Previous method \#2: In-context Learning

Prompting LLMs with demonstrations of tool calling

But ...

- Shallow Understanding: Can only learn from surface text instead of large-scale data :

ReAct: Synergizing Reasoning and Acting in Language Models [Yao et al., 2023]
Gorilla: Large language model connected with massive apis [Patil et al., 2023]

Teaching LLMs to Use Tools

Is there a method to overcome all the limitations mentioned above?

Fine-tuning
In-context learning

Teaching LLMs to Use Tools

Is there a method to overcome all the limitations mentioned above?

Fine-tuning

ToolkenGPT learning

We propose 澊:ToolkenGPT to tackle these challenges

Background: Next Token Prediction

Recall how a standard LLM predicts the next token…

Example: Solving a math word problem

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?
Answer: The maximal side length of each section is 16 meters. Therefore, the area is \qquad

Background: Next Token Prediction

Recall how a standard LLM predicts the next token…

Background: Next Token Prediction

Recall how a standard LLM predicts the next token…

What if we have the embeddings of tools?

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?
Answer: The maximal side length of each section is 16 meters. Therefore, the area is \qquad

Background: Next Token Prediction

Recall how a standard LLM predicts the next token…

What if we have the embeddings of 㻮 tools?

"Tool as to"ken

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is \qquad

Step 1: Next token/toolken prediction

Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Step 2: Argument prediction in a separate tool mode

Generating arguments with in-context learning

Step 3: Execute the tool call and return the result

Finally, the tool call is executed and the result is sent back to the reasoning mode

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
Target sequence s^{\prime}
area
[mask]
[mask]
square
feet

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
Target sequence $s^{\prime} \quad$ The
<square>
[mask]
[mask]
feet

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
Target sequence s^{\prime}

<square>
[mask]
[mask]

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
Target sequence s^{\prime}
The
area
is
<square>
[mask]
square
[mask]

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
The
area
Target sequence s^{\prime}

area

<square>
[mask]
[mask]
feet
feet

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
The
area
Target sequence s^{\prime}
The
area
is
2
5
[mask]
square
feet
feet

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s
The
area
is
area
is
Target sequence s^{\prime}
The
<square>
$\begin{array}{ccc}5 & 6 & \text { square } \\ \text { [mask] } & \text { [mask] } \\ \text { feet }\end{array}$

Training toolken embedding - Objective

Training objective: Next token / toolken prediction

Input sequence s The	area	is	2	5	6	square	feet
Target sequence s^{\prime} The	area	is	<square>	[mask]	[mask]	square	feet
Training Data: - Demonstration data - Synthetic data							

Training toolken embedding - Optimization

Training toolken embedding - Optimization

Initialize the toolken embeddings

Training toolken embedding - Optimization

Training speed $\&$ memory \approx LLM inference

Experiments

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer:

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is GCD $(64,48)$

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is \square (16)

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is 256

Experiments - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Math tools identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is 256 square meters.

Experiments - Math Reasoning

- Outperforms other tool learning baselines, especially better at more complex math tools.

Experiments - Math Reasoning

- Outperforms other tool learning baselines, especially better at more complex math tools.
- Beats GPT-3.5 with LLaMA-33B

Experiments

- Outperforms other tool learning baselines, especially better at more complex math tools.
- Beats GPT-3.5 with LLaMA-33B

Experiments - Knowledge-based QA

Question: Which team is the winner of 2005-06 FA CUP?
Answer:

Experiments - Knowledge-based QA

Question: Which team is the winner of 2005-06 FA CUP?
Answer: The winner is

Experiments - Knowledge-based QA

Question: Which team is the winner of 2005-06 FA CUP?
Answer: The winner is winner_of (2005-06 FA CUP)

Experiments - Knowledge-based QA

Question: Which team is the winner of 2005-06 FA CUP?
Answer: The winner is Liverpool

Experiments - Knowledge-based QA

- Prompting - In-context - ToolkenGPT (syn) - ToolkenGPT (sup)

- ToolkenGPT with only synthetic data beats all baselines
- Scales to > 200 tools

Experiments

Experiments - Embodied Plan Generation

Work: Go to office, sit at desk, turn on computer, enter password, open application and begin work

Experiments - Embodied Plan Generation

Work: Go to office, sit at desk, turn on computer, enter password, open application and begin work
 actions
Plan:
Generation with In-context Learning
[WALK] <office>
[WALK] <desk>
[FIND] <desk>
[SIT] <desk>

Experiments - Embodied Plan Generation

Work: Go to office, sit at desk, turn on computer, enter password, open application and begin work
Plan:
[WALK] <office>
[WALK] <desk> "Object not found" - Plan not grounded to the environment [FIND] <desk>
[SIT] <desk>

Experiments - Embodied Plan Generation

Work: Go to office, sit at desk, turn on computer, enter password, open application and begin work

Plan:
[WALK] <office>
[WALK] <desk>
"Object not found" - Plan not grounded to the environment
[FIND] <desk>
[SIT] <desk>
"Desk not sittable": Doesn’t understand the action "[SIT]"

Experiments - Embodied Plan Generation

Work: Go to office, sit at desk, turn on computer, enter password, open application and begin work

Plan:
walk
home_office
walk
find
find
home_office
chair

Generation with In-context Learning
"Object not found" - Plan not grounded to the environment
∇ Valid actions and objects = Toolken vocabulary
"Desk not sittable" - Doesn't understand the action "[SIT]"
∇ Learn from training data!

Experiments - Embodied Plan Generation

Summary and Future Work

㓩: ToolkenGPT: Embedding the tools as tokens

- Frozen LLM / Massive tools / Plug \& Play / Deeper understanding
- Superior performance in diverse domains

Summary and Future Work

海: ToolkenGPT: Embedding the tools as tokens

- Frozen LLM / Massive tools / Plug \& Play / Deeper understanding
- Superior performance in diverse domains

Future work:

- Planning for multi-step tool using to solve more complex tasks

Reasoning with Language Model is Planning with World Model

Shibo Hao ${ }^{* *}$ Yi Gu*** Haodi Ma ${ }^{\diamond}$ Joshua Jiahua Hong*
Zhen Wang** Daisy Zhe Wang ${ }^{\diamond}$ Zhiting Hu*
${ }^{\star}$ UC San Diego, ${ }^{\diamond}$ University of Florida

- Mohamed bin Zayed University of Artificial Intelligence \{s5hao, yig025, jjhong, zhw085, zhh019\}@ucsd.edu \{ma.haodi, daisyw\}@ufl.edu

EMNLP 23'
GenPlan@NeurIPS 23'

Summary and Future Work

㓩: ToolkenGPT: Embedding the tools as tokens

- Frozen LLM / Massive tools / Plug \& Play / Deeper understanding
- Superior performance in diverse domains

Future work:

- Planning for multi-step tool using to solve more complex tasks
- Embedding stronger tools?

Summary and Future Work

"To control a robot, it must be trained to output actions. We

RT-2

By Google DeepMind

 address this challenge by representing actions as tokens in the model's output - similar to language tokens and describe actions as strings that can be processed by standard natural language tokenizer"

Summary and Future Work

DreamLLM

[Dong et al., 2023]

Interleaved Documents
"I like my cute Siamese cat.",

'She has beautiful blue eyes, and she likes to lie on her cozy
nest.", ...
$\left.\begin{array}{c}\text { word } \\ \text { embeddings }\end{array} 0 \begin{array}{c}\text { special } \\ \text { <dream> token }\end{array}\right]$
<s> I like my cute Siamese cat.

She has
beautiful ... </s>

$\mathrm{O}-\cdots \quad \mathrm{O}$
Causal Multimodal Large Language Model (MLLM)

dream queries

Summary and Future Work

造: ToolkenGPT: Embedding the tools as tokens

- Frozen LLM / Massive tools / Plug \& Play / Deeper understanding
- Superior performance in diverse domains

Future work:

- Planning for multi-step tool using to solve more complex tasks
- Embedding stronger tools, \cdots or even multiple LLM agents?

